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Sufficient conditions for the stability of the circular motion of the center of mass of a sys-
tem consisting of a solid with a cavity completely filled with a viscous incompressible
liquid are obtained; conditions for its relative equilibrium with respect to certain known
parameters are derived. The investigation is carried out with the aid of Rumiantsev’s formu-
lation and by his method for solving problems on the stability of motions of liquid-contain-
ing solids [11.

In the case of one attracting center, sufficient conditions for the stability of a liquid-
filled solid were obtained by Kolesnikov [2]. The same problem for the case of a solid
alone was solved by Beletskii {3l.

1. Let us consider the motion of a free mechanical system in the form of a solid with a
cavity of arbitrary shape which is filled completely with a homogeneous viscous liquid and
moves in the force field of two stationary attracting centers with inverse square attraction
laws.

Let Ofl 6263 be a stationary orthogonal coordinate system. The stationary attracting
centers ¥, and N, of the massesm  and m, (one of these masses can be negative, in which
case the corresponding center repels instead of attracting) and with the gravitational cons-
tants f; and f, are assumed to lie at the points with the coordinates ‘53 = 63“) and .f3 = 63(2)
on the axis O &5,

Let us introduce the two additional stationary orthogonal coordinate systems with their
origins at the center of mass G of the system: 1) the system Gx, x,%; whose axis Gx jhas
the same direction as the axis 053, axis Gx, is perpendicular to the axis 0{:3 and is di-
trected from the point G towards the axis ()53, and axis Gx, is perpendicular to the axes
Gx, and Gx ; and is directed in such a way that the systems of axes 0¢, :fzfs and Gx % %
have the same orientation, and 2) the system Gy y, y; whose axes are directed along the
principal axes of the central ellipsoid of inertia of the system under consideration for the
point G; the axes of this ellipsoid are also the principal axes of inertia of both the solid
and the liquid.

Thus, if 4, Az' 4, 1, I,. I, and J,, J,, J; are the principal moments of inertia rela-
tive to the axes y,, y,, ¥4, respectively, of the solid-liquid system as a whole, then

Ay=1,+J, (123)

The directions of the axes x; (i = 1, 2, 3) and of the radius vectors R, and R, extending

from the point G to the attracting centers N; and N, relative to the coordinate axes Gy ¥y, ¥,
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will be expressed in terms of the direction cosines Qyps Cyge Oyge R‘, ﬂz' 33 sand ¥y, ¥,
Y3, respectively.,

Letr, &, 53 be the cylindrical coordinates of the center of mass G of the system; M
and M, are the mass of the solid and liquid, respectively; ¥ = ¥, + ¥, is the total mass of

the system.
The function of the forces acting on the system is given by the integral

=\ (b fema
U—b,(f’xm—*— Pam)dm

Here

Pum® = Bi® — 2Ry (1By + vP2 -+ yaBa) 4 < 27 + w2, R =r2 4 (ED — gy

Pem: = Re® — YRa (11 -F ove + ¥s70) S 2+ w24 1t Ro?==r24- (£ — )8

We shall consider the problem in restiicted formulation, i.e. we shall replace the above
force function U by an approximation which we obtain by expanding the integrand in series
in powers of y, /R, y,/R,, y;/R, (i=1, 2), and by neglecting terms of higher than the sec-
ond order of smallness. This yields

2
. -] M 3 i)* i)t i K| 'f‘ Aa -+ A
Us= o4 = o (A - @ gy o D 2 A
i:;ll Uli-h'i 2“1{1;’(/ i ' T s ) ZRia

(Gi = jimi, { = i, 2
Werey (U, y (1, 5 (D and y (P, y,(D, y,{D are the coordinates of the sttracting cen-
ters N, and N, in the system of axes G ,
1 2 ) V1Y 23
yx(‘) =rdy + (53(1) — &3) 2, ye(t‘) == £y (53(-‘) — E3) tay
v =ram o+ EBY — B ((:=1,2)

We denote by ) 1 Qz ) 3 and @ ;, W ,, M 3, respectively, the projections on the axes
Y1+ ¥9» ¥ 3 of the vectors of the absclute and relative (with respect to the coordinate system
Gx,x,x,) instantaneous angular velocity of the solid. Clearly,

17273 g Y y

Q= gt o, Q= qap to, Q=@ry te (@ == dp/dt)

We now have the following expressions for the kinetic energy of the entire system T, that
of the solid T, , and that of the liquid T

Tom Ty Ta, 2Ty My (r? @7 4 B5) o+ KQ? ) L 4 1,080
2T == My (r"2 - P27 -f 8% +4 W2 - Jo® -+ JaQa* 4 2{01Q - 829 + 2:%) +

1p 5 (u1® 4 up® + us?) dv
v
Here

E1==p S Yoty — ysus) dr (123)
A
are the projections on the axes ¥, ¥;, ¥3 of the moment vector relative to the center of mass
G of the system of momenta of the liquid particles in their motion relative to the coordinate
axes Gy, y, ¥, u,, u,, u4 are the projections on the same axes of the velocity vector of
th?: liquid particles relati‘{e to the coordinate axes Gy, y, ¥, ; p is the density of the liquid;
T is the volume of the cavity.
We can now write the equations of motion of the mechanical system,

. wa au .8
M(r ——rq)-):; T Mgy :aa

d .
2 DM+ (b g) aay - (12D 4 g2) Tan - (AR5 4 ga)ag]=0 (1.1)
d$y dg
Ay ‘d—,' T (s o) Qg -azl © s Qe Ly 123) (1.2)
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d
Fr W+ Qays — Qoys +u1) + D (Vo + Qi — Qayr + uz) — Qs (Va 4+ Qayy — Quys + us) =
1 8
=RA0+ RO — —5E ot van (1.3)

da, da
d:l = Qs — Qadas + @ (Xza%ag — Aggtga) (12, d:l = Qg2 — Qs (123)(1.4)

Here L, L,, L, are the projections on the axes y;, ¥,, ¥3 of the moments of the exter-
nal forces, which in our approximation are of the form

33,
L= RD (13 — A2)B:3s + 3 ( A3 — A2) Yoy (123

v 1» Va» V; are the projections on the axes Y10 Yo+ ¥5 of the vector of the velocity of the
center of mass G of the system; F (1), F (1) ?’) and F (D, F (D, F,(D are the projec-
tions on the same axes of the attracuve 1orces exerted on a hquxd pamcle by the attracting
centers N, and N, respectively; p is the hydrodynamic pressure; v = p/p is the kinematic
coefficient of vmcosity. p is the coefficient of viscosity; A is the Laplacian.

To Eqgs. (1.1) to (1.4) we must add the continuity Eq.

aul allg 6u3

3y oy, T oy, =0 (1.5)
the boundary conditions u, = u, = u; = 0 at the walls § of the cavity, and the relations
&(1) E Es (1) __ £ Es(n . ia
Br= "—ﬂn + 2 an, B= - R 023 + '_lids‘:, Bo= 5~ A Sy
r Es ‘2’ £ r Ea® — r m _
n= g, M + B & &

a1, Ta = R: Qs 4 Ra A32, Ts :E A2z -} T A3z

The equaﬁons of motion of mechanical system (1.1) to (1.5) enable us to write the ener-
gy relation (1.6)

3
Qo [Oug\? 2 dup\? | duy
d ) ( i (Bug _6u3> dug ul) ( uy ) ]d
—=—ul\l2 2 1 Ouz 4 Ols Jus 4 0 guy T
dt (r—"0) *S[ & 8y,> + dys Oy, (0y1 dys + 3y2+3./1

and the following first integrals:

Mg+ (A4,Q, + glay + (4.2, + glagy + (4,9 + gi)ay; = const (.7
a? + g oy =1, ag? - oag® ooyt =1 (1.8)

2. Let us establish some relations. By G, G,, G, we denote the projections on the
axes y;, yp, ¥3 of the kinetic moment vector relative to the origin G of the coordinate sys-
tem Gy,y,y 3 of the liquid particles in their motion about the center of mass G of the sys-
tem; then,

Gy=J,Q + 5 1z

We make use of the transformations [ 1]

0 = G/ Jyg23), vy = uy + Quyy — Quuy + og*y, — ©,*y, (123)

The expression for the kinetic energy T, of the liquid can be reduced to

" Gy? Gy? S . . .
2Ty = M (r* -+ r°@ - &%) + 1 + Jz + T, TP Yl vl - vd)de

From (1.6) we infer that

T—UKTo—Ue (To=T ;g Uo=U|;_y) 2.1)

Finally, we can rewrite relation (2.1) and area integral (1.7) as

Gt G,e Ca?
M4 P B0 hO3 4 10 4 I+ S+ S 1 5
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P S (11?4 va? 4 v5°) dv  const
b 14

Mrrg” + ([, + Gay + (1323 + Gylay + (13Q; + Gy)a;; = const
respectively.

3. Eqgs. (1.1) to (1.5) have the particular solation

Q=Q =0, Q;=0 = const,

Qy) = Qg3 = Q3 = A3, = 0,
HLi=8 =8 =0,

Gy = 33 =1

m=uy=uy=0, r=r, r=0 =4k
B8y =0, 9 =0 (3.1)
where the quantities r, and fso can be determined from Eqs
3
M 15 [Aore® | Ag (B — o), 3(A1 b ot As)  343) 15 )
g~ s |yt el — 3l O — g0
i?l Rhs ans Rioz ha 2Ri05 wS (3 2)
[sl (Es® —- Ean) | 02 (B — zso)] ) o ‘
Fad® + Rt (As— Ay} =

Rt=re + &M — &), Rw'=ret+ (& — o

and where the angular velocity @ of the center of mass of the system is given by Eq.

s=_._1_(ﬂ =\ _G% ® gy
o= 17 (o), = 2 wm { = e A+ A 60— B+

I (A + Az + A9) 34, .
+ 2R3 TR T } (3-3)
This particular solution comesponds to motion of the system in the circular orbitr=rg,
fs = & 30 with a constant angular velocity @ in such a way that the principal central axes

Y1+ ¥ 2 Y3 of the ellipsoid of inertia of the system are directed along the tangent, principal
normal, and binormal of the unperturbed orbit, respectively; the liquid is at rest relative to
the solid, i.e. the system moves as a single solid body.

Let us investigate the stability of unperturbed motion (3.1) of the system with respect to
the variables

Qi" G{v a2i' asi' r, r.- ES- Eﬁ.» w.' P S vis dv (i = 1' 2' 3)
.
In perturbed motion we set

=(D+Qs‘, Gs:’—‘.’a(‘) + Gg‘,

(3.4)

dze =1 -} ass°, ag =1 4 az*
r=ro+4re, E=En+{+5° =010

retaining the original notation for the remaining variables.

The equativas of perturbed motion of the problem under consideration have the first in-
tegrals

Wi=4Mrow®r* 4 2I3093" 4 20Cs° - 2Mr*ww® + 6.1:P123* + 6A45Q%s° -+
+ M (Arowr*0® +r30* 472 4 £ 4 3P (A1am® + Asdtes®2 - Asan?)-
+3Q (Artar® -+ Astns® + Aﬁa") + HQ® 4 1:Q:3 -+ Iyy*2 4

+8 5 o0 +PS("1’+V:’+":’)'1"+

+[Mo*— (U, Jo]r2— WUee ) E;" 2 (U'.‘_)o r‘E,‘ = 2(U, g Jor"as" — Z(Uu Yo P*0lgy° -~
—2 (Url,)o r.aa —2 (Ur¢ )0 r.a' -2 (Ub“u)o E’.a’s -2 (Ugﬂ. )0 E' u” -
—2 (UE“”)Q Ey*otgy — 2 (U‘.‘")o Es*asy 4+ 0 (3) < const
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Wa==M (2rowr®* + ro*0*) + 14Qs* + G3* + A;015° 4
+ M (W" + '2rgr'm") + (1191 + Gx) g1 -+ ([393 - Gg) Ags -+ (I;Qs‘ -+ Gg‘) ass™ = const

W= 2000® + @m? - agg®* - @es® == 0, W= 205" }- 03 + 035" 4- 253" = 0
FPere
v Ay o ’1 105 -
Uk = ( ,) -——M(o-+3MP+Z G‘I- TA, AR 9 __ ,g ,3(&'“) Em)"'RZ:-F
i=1

— 15
+304yro®RY + 5 (o s+ A R |

3
Weeo=(Ggs), == Mo+ 340+ N o5 [— 190 orgt 0 — et A2 —
f=y

105
g A& — £t B 4 3 (s — A R +'2"(Ax + As+ 43) (&Y — &) RY +

+3045 (6 — ) By |

2
U 105 105
o= (m)fél [ e @0 — g A + 12 v @0 — ke R —

15
— B A At A (6O — ) B — 15 (A AN 6O — B0 B (39)

e = (550, = 3470 ‘ZJI o (Srethyy —2) Ry
Uro)o = e/ U” )oz 15457 2, 6 (Eso — E) BT
(Uye o= (af ;gu , Asro ‘gl o, (& — &) RY)
Urebo = ( )

(:1

2L
(Uﬁaﬂ:z)" e (aaa Btz

) =1545r0 Y oy (E" — Eao)? Y
)

== 15Aaro? E o; (Eso — ES) BT

i=1
ey o= (.2_{1_..) = 3457 z o {1 + 58" — &) R RS
Eyogy 3&,61,, 0 §—1 i o o

2
(Uge o =( il ) =3dyre D) o, [1 — 5 (& — L) RJI RS

6{, 3132 0 i—1
1
ey (ihs p—1
Ug,ap)o (bia_) =154 i§1 Sy (8 — 857 Ry

P=rd@RE + o), Q=01 (L — &) Ry + 02 (€ — Ew)* R
and O (3) denotes terms of not lower than the third order of smallness with respect to the
pertarbations. With perturbed motion, by virtue of (1.6), dW, /dt < 0.
Let us consider the following function of the variables of the problem constructed by
Chetaev's method [4] as a bundle of the first integrals of the equations of motion,
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W= W, — 20W, — 34,PW, + A;(@* — 3Q) Wy + AW 4 Y vW3? + Vg xW 3 =
= W 4+ w® + W + 03 (3.6)

Here

WO — M (r'* + £ + 3 (i — As) Pan? -+ S (rs 4 o2+ va?) de

W® = [0 4 G/ Iy + [ Ay0t — 3 (43 — A1) Q] an? — 2L,6Q3n — 20611n
W = 140y — 20L,0Qtse + I5 (1 + A3) ©** + 2A14Q:%Gs* + 2150 (A Ay — 1) D*axn® +-
+ 2AM I3} Qs 0® 4 AAMIgrqwQe*r® + Gs? | Jy — 20Gsan + (1 4+ AJ3) G s+
+ 20 (AAs — 1) Gy*tag® + 2L MretGs*@* + 4AMroGa¥r® 4 van®® — 2 (U, ), Ea%0as® —
—2 (Ura,,)ﬂ"aﬂ‘ +3 (A — A P —2(U;z 5. )0 Bty — 2 (Ura')gr'a” +
+ [A50% — 3 (A3 — A3) Q] tsg® — 2 (Ugq hbs*am — 2(Up,) o202 + (4s0° + Ads%0? +
+ %) an®t 4 2AM Aytootan® — 2(U; , ) Es*an® + 2 [2AM dyrew® — (U,, ) ] r*as® +
+ Mrod (1 4 AMre®) 0°* + 4A Mirdww*r® — (U ), &% — 2(U,z )o &*r® +
+ (M0 — Mo — (U, o] r**
and A, v, X are sufﬁcieng’y large positive quantities chosen from the condition of positive

definition of the function W.
By the Sylvester criterion the quadratic forms W(1), W{(®, gnd W{3) and hence the func-

tion W, are positively defined if and only if

(4, — 4) P> 0, (A3 — 4))(0* —3Q)>0

(4; — 4P >0, (43 — 4y) - (0* —3Q) >0 (3.7)
3(As — A2) (@ —3Q) P Ui+ 3P Uy )y (Urg o+ (08 — 3Q) (Uga W <0 (3.8)
( M ?02 + A;) (d),{@gg" — 013”) + 41"{ 2}'02&)2¢u° > 4] {3.9}

Here
Ou” = — Wy o — 13 (4 — As) P17 (U, Jo — [(ods — 49) (62— BQ) (U,

O1y° == — (U Jo — [3(As — A2) [ (U, )y W )y —
—[(As — A=) (02— 3Q)] (U,

LE
Dny” = — [M6* -+ (Urrdo] — [3 (4s — A2) P|! (Uraal®™ [(As — As; (0* — 3Q)] (U, )o?

If conditions (3.7) to (3.9) are fulfilled the function W given by Formula (3.6) is the
Liapunov function for our problem. In fact, the dW/d¢ chosen on the basis of the equations
of perturbed motion is nonpositive by virtue of (1.6), From this, by Rumiantsev’s theorem
on stability with respect to some of the variables [5], we infer that unperturk-? motion {(3.1)
of a solid with a cavity filled with a viscous incompressible liquid is stable with respect
to quantities (3.4). As we know, the unperturbed motion of system (3.1) cen be regarded as
the resultant of two motions: the motion of the center of mass and the motion about the cen-
ter of mass. Conditions (3.7) in this case are the conditions of stability of motion of our
system about the center of mass, while (3.8) and (3.9) are the conditions of stability of mo-
tion of its center of mass.

We note that if the total maas of the system is considered as concentrated in its center
of mass, then conditions (3.8) and (3.9) become the familiar criterion [4] of the stability of
circular orbits of a material point in an axisymmetric force field with the force function U =

= U (’. 63)'

Yo (Uz g Jo

EEL Y

3
e <0 [0+ o W] Wedo— We3,2>0

In conclusion we note that in the case of a single attracting center conditions {3.7) be-
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come the familiar {2 and 3] conditions As > Al > Az‘

4. Example, Let us consider the stability of motion of a spacecraft with a cavity
completely filled with a viscous liquid in the Earth’s normal gravitational field.

As we know [6], the potential energy of a point of unit mass attracted by two stationary
centers of equal masses M/2 lying at the distance 2ci (i =/~ 1) from each other is given
by

7! M{ : + ! }ooaw
— = 5 g *.
2 VE & T G —wop | VE+ &+ (Gt o

and can be expressed as a series in Legendre polynomials,

ne— Ml S (D) ma(B) ewere

==

I

Setting M equal to the Earth’s mass and ¢ = 210 km, we find that the first two terms of
series (4.1) are equal to the corresponding terms of the expansion of the Farth’s potential
in a series in Legendre polynomials, and that the third terms of these series are also suf-
ficiently close. Hence, expansion (4.1) is an adequate representation of the potential of the
Earth’s normal field.

If we set

2V = —ic, tP=ie,my=m=M/2, fy="f,= |
we find that Eqgs. (3.2) have the solution .fs = §3 =0, r=ry, where the angular velacny
@ of the center of mass of the spacecraft is related tor, by Expression (3.3}, which in this
case becomes
f 15 Ay A= Ay 3 A
o= g3 [M TRy (Aere® — Asc?) o+ 24 = 4)1{0 +~ = e ] (Ro?ra? == )

Solution (3.1) corresponds to motion of the spacecraft in the circular orbit r=ry, £3 = 0
in the plane of the equator with the constant angular velocity @ in such a way that the prin-
cipal central axes y,, v,, y; of the ellipsoid of inertia of-the dynamic system are directed
along the tangent, principal normal, and binormal of the unperturbed orbit, respectively; the
liquid is at rest relative to the wall of the spacecraft cavity, i.e. the entire system moves
as a single solid body.

For the quantities P and Q introduced above by means of Formulas (3.5) we have Fx-
pressions

fMry®
Pz r? (hnRig™ - famaligy™) = e > 0
{ro* —cH™
W 2 . (@ Y » Mc'
Q = fima (8™~ By0)® Ryo™ -4 fama (80" — Eo)? Rup™8 o — oo g 0
(ro* - )
Conditions (3.7) then give us
Ag > 03> 4, (6.2)

Further, since the ratio s':z/(rn2 ~ ¢?) is very small as compared with unity, condition
(3.8) can be written approximately either as (Ug £}, <0 oras — {wv? - 3Q)M < 0. Since
Q <0, this condition is, in fact, fulfilled. For the same reasons condition {3.9) can be re~
written approximately as

(U, o4 3170 (U] Uz )y — U,z )2 3> 0

By virtue of (3.5) the second term in this expression is considerably smaller than the
first, so that (appro'ximately)rw")o + 3/r0 (Ur)ol (05353)0 > 0. Siace ({35353)0 <49, it
follows that

3 M ( 3ry?

oo 700, ey B TRl <O



Stability of motion of a solid in the force field 289

Since ¢ = 210 km, and since r; is larger than the Farth's radius, this condition is fulfil-
led for all real satellite motions of spacecraft.

Thus, we have shown that stability conditions (3.7) to (3.9) for unperturbed motion (3.1)
of a spacecraft can be reduced to conditions (4.2). This proves that the stability conditions
for the described motion of a spacecraft in the Earth’s normal gravitational field and for its
motion in the Farth’s central force field are of the same form [2 and 3].
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