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Sufficient conditions for tbe stability of the circular motion of the center of mass of a sys- 

tem consisting of a solid with a cavity completely filled with a viscous incompressible 

liquid are obtained; conditions for its relative equilibrium with respect to certain known 

parameters are derived. The investigation is carried out with the aid of Rumiantsev’s fonnu- 

lation and by his method for solving problems on the stability of motions of liquid-contain- 

ing solids [ 11. 

In the case of one attracting center, sufficient conditions for the stability of a liquid- 

filled solid were obtained by Kolesnikov [21. The same problem for the case of a solid 

alone was solved by Beletskii [3]. 

1. Let us consider the motion of a free mechanical system in the form of a solid with a 

cavity of arbitrary shape which is filled completely with a homogeneous viscous liquid and 

moves in the force field of two stationary attracting centers with inverse square attraction . 
laws. 

Let Ott 6,6, h e a stationary orthogonal coordinate system. The stationary attracting 

centers N, and N, of the masses mt and m2 (one of these masses can be negative, in which 

case the corresponding center repels instead of attracting) and with the gravitational cons- 

tants ft and f are assumed to lie at the points with the coordinates es = tit) and (‘, = c,‘2’ 

on the axis 0 % 
Let us introiice the two additional stationary orthogonal coordinate systems with their 

origins at the center of mass G of the system: 1) the system Gztx2n3 whose axis Cr shas 

the same direction as the axis 06,. axis Gx, is perpendicular to the axis 06, and is di- 

rected from the point G towards the axis O(,, and axis Gxt is perpendicular to the axes 

Gx2 and Cx, and is directed in such a way that the systems of axes 0 5, t2t3 and Gx,z2x3 

have the same orientation, and 2) the system Gy ty2 ys whose axes are directed along the 

principal axes of the central ellipsoid of inertia of the system under consideration for the 

point G; the axes of this ellipsoid are also the principal axes of inertia of both the solid 

and the liquid. 

Thus, if A t, A,, A,, I,, 12. I,, and It, I,, J3 are the principal moments of inertia rela- 

tive to the axes yt , y2, y3, respectively, of tbe solid-liquid system as a whole, then 

A, = I, -I- J, 0231 

The directions of the axes x, (i = 1, 2, 31 and of the radius vectors Rt and R2 extending 

from the point C to the attracting centers N, and N, relative to the coordinate axes Cyty, y3 
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will be expressed in tens of the direction cosines u,, , CZ,~, CC,,, fl,, f12, d,, and yt, yz, 

y3, respectively. 

Let t, 4, if3 be the cylindrical coordinates of the center of mass G of the system; M, 

and M, are the mass of the solid end liquid, respectively; iw = M, + V2 is the rota1 mass of 
the system. 

The function of the forces acting on the system is given by the integral 

Here 

P 2-R 
lm - I* -- ~RI (r/JfiJ $- ?& + Y&) + YJ’ -f- $‘3’ + ~3~. R1? zz rf + (p - &)Y 

P 4m - * - R-2” - a (VlT1 -t ?/2-f? + Y3Y3) + YI’ _c yg + y_qJs9, &’ z r? + (tp - p&y 

We shall consider the problem in restricted formulation, i.e. we shall replace the above 
force function U by an approximation which we obtain by expanding the integrand in series 

in powers of yt /R,, y2/Ri, y3/Rt (i = 1, 2). and by neglecting terms of higher than the sec- 

ond order of smallness. This yieIds 

Uere y,(l), yz(l), y,(l) and Al, y,f2’, y,t2) sre the coordinates of the sttracting cen- 

ters N, and N, in the system of axes Gy, y g3, 

71 
c 

yp z *A, + (Q) - i, z?SJ, yp -‘= rx... -f- (Q’ - &)a= 

yp L3 F?s i- (SP - 49) 238 (iL=l, 2) 

we denote by n t, ci,, 2 3 and IO ,, cr) 2 t f’) 3 I respectively, the projections on the axes 
, ylr y3 of the vectors of the absolute and relative (with respect to the coordinate system 

rtz2r3) instantaneous angular velocity of the solid. Clearly, 

62, = @fs,-E or, $22 T= r&Q -f- W2, 52, = (i)r33 -t a3 ($ = d@cit) 

We now have the following expressions for the kinetic energy of the entire system T, that 
of the solid T,, and that of the liquid T2: 

are the projections on the axes yI, yz, y3 of the moment vector relative to the center of mess 
G of the system of momenta of the liquid particles in their motion tefative to the coordinate 

axes Gyt y2y3: a,. a2, a3 are the projections on the same axes of tbs velocity vector of 

the liquid particles relative to the coordinate axes GyJ yz y3 
T ia the volume of the cavity. 

; p is the density of the liquid; 

We can now write the equations of motion of the mechanical system, 
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$ (VI -I- Q2Ya - Qg3 + 141) + S23 (VS + Qly2 - S&Y1 + aa) - Q3 (V3 + Q3Yi - QlYa + U3) = 

(1.3) = F1(‘) + F&f) - (123) 

&l 
-=!a&?- di Q3%3+ T'(z3323a- QS33) (1231, s= Q&3-- w33 w43)(:.4) 

Here L,, L2, L, are the projections on the axes yr, y2, y3 of the momenta pf the exter 
nal forces, which in our approximation are of the form 

Lr (123) 

Vl, V2, V3 are the projections on the axes yr , y , y3 of the vector of the velocity of the 

center of mass C of the system; F,(l), F(l), Fstl) and Fi2), F2(2), F,c2) 

tions on the same axes of the attractive 9 

are the projec- 

orces exerted on a liquid particle by the attracting 
centers N 1 and N,, respectively; p is the hydrodynamic pressure; v = p/p is the kinematic 
coefficient of viscosity; p is the coefficient of viscosity; A is the Laplacian. 

TO Eqs. (1.1) to (1.4) we must add the continuity Eq. 

(1.5) 

the boundary conditions ul = u., = ~1~ = 0 at the walls s of the cavity, and the relations 

‘fhe equations of motion of mechanrcal system (1.1) to (1.5) enable us to write the ener- 
gy relation 

~(T-~)=-~t~[2~~l(~t)2+(~~-~)2+(~+~)2+(~+~~2,~~.~) 

+ 

and the following first integrals: 

MrJcp’ f (A IQI + g&x,, + (A r Qr + g,)a,, -I- (A sQ3 + g3)a3a = const 
arra i- a2** -I- ass* = 1. aala + aspa + a332 = 1 

(1.7) 

(1.8) 

2. Let us establish some relations. By G,, c2, G3 we denote the projections on the 

axes yt, y2, y3 of the kinetic moment vector relative to the origin C of the coordinate sys- 

tem Gty,y, of the liquid particles in their motion about the center of mass G of the sys- 
tem; then, 

G, = J,R, 1- o”l (123) 

We make use of the transformations [l] 

Ot* = G, :! Jt (123),' VI = u, -I- Q&3 - R,y* + 03*y* - 03**v3 (1%) 

The expression for the kinetic energy T, of the liquid can be reduced to 

From (1.6) we infer that 

T-.!J<To-Ur, (To = T Ire,,, Uo = II It=,,) 

Finally, we can rewrite relation (2.1) and area integral (1.7) as 
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MAp* + (ItR, -I- GJa,, f (I,R, -I- G,)a, + (1x@ -I- C&., = cons 
respectively. 

3. Eqs. (1.1) to (1.5) have the particular solution 

9, = a, = 0, s-23 = 0 = const, as1 = as3 = as1 = aJf = 0, all = h, = i 

g1 = &?a = g, = 0. 111 = u* = IL, = 0, r = r,, r’ = 0. Es = Er 
Es’= 0, 9’= 0 (3.1) 

where the quantities r. and eSt, can be determined from Eqs. 
a 

3 (A, $- rlz + As) _ 3.41s 

2Rbb G} (E ti) - b)=O 

1 
(3.2) 

(.-lx - A.)=0 

RIO2 = ro? + (53”’ - w. Ryg L ro* + (t;(C) - &)’ 

and where the angular velocity o of the center of mass of the system is given by Eq. 

+ 

3 (A + 4 + 4‘13) 3A9 -- 
2Ri,S + 2Ri,” I 

(3.3) 

This particular solution corresponds to motion of the system in the circular orbit t = ro, 

5; = &o with a constant angular velocity o in such a way that the principal central axes 

yt, yzr yJ of the ellipsoid of inertia of the system are directed along the tangent, principal 

normal, and binormal of the unperturbed orbit, respectively; the liquid is at rest relative to 

the solid, i.e. the system moves as a single solid body. 

Let us investigate the stability of unperturbed motion (3.1) of the system with respect to 

the variables 

Q+ Ct. aql. agi. r. r*, G. Go. q’. pSutdr @=I, 2, 3) (3.4) 

. 
In perturbed motion we set 

Q,= (3 + W. Gs=Jr@$ c**, am= 1 +af*, aIs=i +a=’ 

r = r. + r’, b=&J++G’, (P’=O+tO’ 

retaining the original notation for the remaining variables. 
The equations of perturbed motion of the problem under consideration have the ffrst in- 

tegrals 

WI = 4Mro&* -J- 21&2x* + 2~Cx’ + 2Mro%W + 6AxP5r* + 6A~Qza’ -j- 

+3Q (A,%? + Ash2 + A&a*3 + I&h* + Z:W + Id&“+ 
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-i 

- 

= 
*i 

i 

105 
z &OS 

Aat “2 +$(A, + As + As) (b(” - t&)’ R;o; + 

(b”’ - 105 
2 

-t3OAa (@ - &to)? R;~ ] 

ho (&I (0 - &)a “2 - 

- $ (Al + An + AJ) ro (@ - &,) R;;’ - 15 (As -/- Aa) ro (b(*’ - &I) RG7] (3.5) 

(“,a,)~ = ($$-), = 3&o j+ dr (SroV; - 2) Ri;: 

P = ro’ (SIR;; + a,R;;), Q = 01 (C’,” - &o)~ R_; + as (E’s?’ - b;so)’ Rz 

md 0 (3) denotes terms of not lower than tbe third order of sma&&ts with respect to the 
pertarbetiona. With perturbed motion, by virtue of (1.61, dWt /dt ,< 0. 

Let aa conaider tbe following function of the variables of the problem constructed by 
Cbetaev’a method [4] ar a bundle of the first integrals of the equations of motion, 
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W = W, - 2iaW, - 3AsPWa I- A,(& - 3Q) W, + AU”, + ‘/r vws’ + ‘fr xw,’ = 

= w + wcp) + wt3) + 0 (3) WI 
Here 

Iv(‘) ZEc M (9 + %“) + 3 (Al - A$ AsI'+ pS(r2f or*+ w") a 

t 

+ [A& - 3 (As - Ai) Q] a11 - 2 (U,,,@*a~ - 2 (u,,u) or*%= + (Alo’ + A&‘@’ + 

+ X) a# + 2&MAsro%O*3L~* - 2 (c.‘++& k*w* + 2 I2L4f&r0~~ - l@,J ol r*atJ* + 

+ &fro* (1 + LMro3) 0"' + 41 M%&oo*r* - (ULG)o G’a - 2 (U&I t’ro -I- 

+ [4XMrro*orr - Mor’ - (U,,)o] r*’ 

and h, Y, x are sufficient1 large positive quantities chosen from the condition of positive 
definition of the function IV! 

Ry the Sylveeter criterion the quadratic forms I(*), I@‘(‘), and Wt3), and hence the func- 

tion W, are positively defined if and only if 

(Al--A& P>O, (AS-At)(oa-3Q)>o 

(Aa - &P > 0, (A, - Aa) - W -3Q)>O (3.7) 
3&-- A*)(~11-3Q)~(~~:~)~+3~(~~;~,,)0(~tr~r)~+(~'-3Q)(U~,k'< 0 (3.8) 

(Mr0? + AS) f%"a)L3* - @13'3)+ ~hf%o~b+%&xo>O (3.9) 
Here 

tD,,* = - (U&<,)O - 13 (A3 - 4) PI-' WzJzI1b- I(& - 4 W-3Q)]-1(U~a,~o~ 

@lsa==-- (~&O-- 13 (‘43 -&PI-' (Q,jo cQQJo- 

--f(A3- .4,)(o~- 3QWW,,,,b KfBlzub 
a>,," =- f~f@J+(u,)o] - 13 (Aa- &) PJ-l(lf,a,)t- [(AJ- Ai;(3-3Q)]-‘(U,.,,& 

If conditions (3.7) to (3.9) are fulfilled the function W given by Formula (3.6) is the 
Liapunov function for our problem. In fact, the dW/dt chosen on the basis of the equations 
of perturbed motion is nonpositive by virtue of (1.6). From this, by Rnmiatttsev’s theorem 
on stability with respect to some of the variables 131, we infer that anperturb*! motion (3.1) 
of a solid with a cavity filled with a viscoaa incompressible liquid 10 stable with respect 
to quantities (3.4). As we know, the unperturbed motion of system (3.1) ten be regarded as 
the resultant of two motions: the motion of the center of mass and the motion about the cett- 
ter of mass. Conditione (3.7) in this case am the conditions of atability of motion of oar 
system about the center of maso, while (3.8) and (3.9) are the conditions of stability of mo- 
tion of its center of mass. 

We note that if the total mass of the system is considered aa concentrated In ftl, center 
of mass, then conditions (3.8) and (3.9) become the familiar crIterIon [A of the stability of 
circular orbits of n material. point in an axisymtnetric force Reid with the force hnction 0 1 
- u G, 6,). 

(~,,),<O* [wp,lo +1 (qo](~&+ wr&*>o 

h ~oncluaion we note that In the catre of a single attracting center conditions ($7) be 
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come the familiar [Z and 31 conditions A, > A, > A,. 

4. Example. Let us consider the stability of motion of a spacecraft with a cavity 
completsly filled with a viscous liquid in the Earth’s normal gravitational field. 

As we hnow [6], the potential energy of a point of unit mass attracted by two stationary 
centers of equal masses M/2 lying at the distance 2ci (i = \m) from each other is given 

by 

(4.1) 

and csn be expressed as a series in Legendre polynomials, 

{I + ; (-V (-:.-)‘” p,,, (?)} 
n==1 

Setting M equal to the Earth’s mass and c = 210 km, we find that the firat two terms of 
series (4.1) are equal to the corresponding terms of the expansion of the Earth’s potential 
in a series in Legendre polynomials, and that the third terms of these series sre also suf- 
ficiently close. Hence, expansion (4.1) is an adequate representation of the potential of the 
Earth’s normal field. 

If we set 
$0(l) X - ic, t$t’ z it, ml - m, =: fif f 2, j, = jr --I f 

we find that Eqs. (3.2) have the solution (f3 = <a, = 0, r = ro, where the angular velocity 
o of the center of mass of the spacecraft is related to to by Expression (3.3), which in this 
case becomes 

e’=$&I-&$(Jl $“? _ _,@) _t_ Q!+?k!~. -t.. 21 (&r ::: r0? __ 00) 

Solution (3.1) corresponds to motion of the spacecraft in the circular orbit r = ro, tX = 0 
in the plane of the equator with the constant angular velocity or in such a way that the prin- 

cipal central axes yt, y2, y3 of the ellipsoid of inertia of-the dynamic system are directed 

along the tangent, principai normal, and binormsl of the unperturbed orbit, respectively; the 

liquid is at rest relative to the wall of the spacecraft cavity, i.e. the entire system moves 
as a single solid body. 

For the quantities P and Q introduced above by means of Formulas (3.5) we have Er- 

$ressions 

Conditions (3.7) then give us 

/I,>.‘+;> 4, * (4.2) 

Further, since the ratio c’/(ro* - c’) is very small as compared with unity, condition 

(3.8) cau be written approximately either as (U~ata)o < 0 or as - ((1,’ - 3Q ).W < 0. Since 

Q < 0, this condition is, in fact, fulfilled. For the same reasons condition (3.9) can be re- 
written approximately as 

l(ur,)0 t- 3 / r0 (Ur)01 (U;$0 - (Urz5)S> O 

Ry virtue of (3.5) the second term in this expression is considerably smaller than the 
first, so that (approximately) f (U,,), + 3/ro (Ur),] (@es e3 )o > O. Since (Ileg 4 3)o < O, it 

follows that 
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Since c L 210 km, and since ro is larger than the Earth’s radius, this condition is fuifil- 

led for all real satellite motions of spacecraft. 
Thus, we have shown that stability conditions (3.7) to (3.9) for unperturbed motion (3.1) 

of a spacecraft can be reduced to conditions (4.2). This proves that the stability conditions 

for the described motion of a spacecraft in the Earth’s normal gravitational field and for its 

motion in the Earth’s central force field are of the same form (2 and 31. 
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